TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI
TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.
FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA. [EQUAÇÃO DE DIRAC].
+ FUNÇÃO DE RADIOATIVIDADE
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ ENTROPIA REVERSÍVEL
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
ENERGIA DE PLANCK
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG
XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
sistema de dez dimensões de Graceli + DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..
- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
xsistema de transições de estados, e estados de Graceli, ESTADOS DE GRACELI TÉRMICOS E ESTADOS DOS ELEMENTOS QUÍMICO, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
número atômico, estrutura eletrônica, níveis de energia - TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG l
N l El tf l P l Ml tfefel Ta l Rl Ll * D
X [ESTADO QUÂNTICO].
X FUNÇÕES E EQUAÇÕES EM:
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+ FUNÇÃO TÉRMICA.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, ESTADOS DE GRACELI TÉRMICOS E ESTADOS DOS ELEMENTOS QUÍMICO, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl * D
Oscilador harmônico quântico
O oscilador harmônico quântico é o análogo mecânico quântico do oscilador harmônico clássico. É um dos sistemas modelo mais importante em mecânica quântica, já que qualquer potencial pode ser aproximado por um potencial harmônico nas proximidades do ponto de equilíbrio estável (mínimo). Além disso, é um dos sistemas mecânico quânticos que admite uma solução analítica precisa.
O oscilador harmônico quântico é o análogo mecânico quântico do oscilador harmônico clássico. É um dos sistemas modelo mais importante em mecânica quântica, já que qualquer potencial pode ser aproximado por um potencial harmônico nas proximidades do ponto de equilíbrio estável (mínimo). Além disso, é um dos sistemas mecânico quânticos que admite uma solução analítica precisa.
Índice
Oscilador harmônico monodimensional
Hamiltoniano, energia e autofunções
No problema do oscilador harmônico monodimensional, uma partícula de massa está submetida a um potencial quadrático .
x
No problema do oscilador harmônico monodimensional, uma partícula de massa está submetida a um potencial quadrático .
x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
x
x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
se denomina constante de força ou constante elástica, e depende da massa da partícula e da frequência angular .
O Hamiltoniano quântico da partícula é[1]:
- x
se denomina constante de força ou constante elástica, e depende da massa da partícula e da frequência angular .
O Hamiltoniano quântico da partícula é[1]:
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
O primeiro termo representa a energia cinética da partícula, enquanto que o segundo representa sua energia potencial. Com o fim de obter os estados estacionários (ou seja, as autofunções e os autovalores do Hamiltoniano ou valores dos níveis de energia permitidos), temos que resolver a equação de Schrödinger independente do tempo
- .
- x
O primeiro termo representa a energia cinética da partícula, enquanto que o segundo representa sua energia potencial. Com o fim de obter os estados estacionários (ou seja, as autofunções e os autovalores do Hamiltoniano ou valores dos níveis de energia permitidos), temos que resolver a equação de Schrödinger independente do tempo
- .
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Pode-se resolver a equação diferencial na representação de coordenadas utilizando o método de desenvolver a solução em série de potências. Se obtém assim que a família de soluções é[2]
- x
Pode-se resolver a equação diferencial na representação de coordenadas utilizando o método de desenvolver a solução em série de potências. Se obtém assim que a família de soluções é[2]
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde representa o número quântico vibracional. As primeiras seis soluções () se mostram na figura da direita. As funções são os polinômios de Hermite:
- x
onde representa o número quântico vibracional. As primeiras seis soluções () se mostram na figura da direita. As funções são os polinômios de Hermite:
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Não se devem confundir com o Hamiltoniano, que às vezes se denota por H (ainda que é preferível utilizar a notação para evitar confusões). Os níveis de energia são
- .x
Não se devem confundir com o Hamiltoniano, que às vezes se denota por H (ainda que é preferível utilizar a notação para evitar confusões). Os níveis de energia são
- .x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Este espectro de energia destaca por três razões. A primeira é que as energias estão "quantizadas" e somente podem tomar valores discretos, em frações semi-inteiras , , , ... de . Este resultado é característico dos sistemas mecânico-quânticos[2].
A segunda é que a energia mais baixa não coincide com o mínimo do potencial (zero neste caso). Assim, a energia mais baixa possível é , e se denomina "energia do estado fundamental" ou energia do ponto zero.
A última razão é que os níveis de energia estão igualmente espaçados, ao contrário que no modelo de Bohr ou a partícula em uma caixa.
Convém destacar que a densidade de probabilidade do estado fundamental se concentra na origem. Ou seja, a partícula passa mais tempo no mínimo do potencial, como seria de esperar em um estado de pouca energia. A medida que a energia aumenta, a densidade de probabilidade se concentra nos "pontos de retorno clássicos", onde a energia dos estados coincide com a energia potencial. Este resultado é consistente com o do oscilador harmônico clássico, para o qual a partícula passa mais tempo (e portanto é onde seria mais provável encontrá-la) nos pontos de retorno. Se satisfaz assim o Princípio da correspondência.
Este espectro de energia destaca por três razões. A primeira é que as energias estão "quantizadas" e somente podem tomar valores discretos, em frações semi-inteiras , , , ... de . Este resultado é característico dos sistemas mecânico-quânticos[2].
A segunda é que a energia mais baixa não coincide com o mínimo do potencial (zero neste caso). Assim, a energia mais baixa possível é , e se denomina "energia do estado fundamental" ou energia do ponto zero.
A última razão é que os níveis de energia estão igualmente espaçados, ao contrário que no modelo de Bohr ou a partícula em uma caixa.
Convém destacar que a densidade de probabilidade do estado fundamental se concentra na origem. Ou seja, a partícula passa mais tempo no mínimo do potencial, como seria de esperar em um estado de pouca energia. A medida que a energia aumenta, a densidade de probabilidade se concentra nos "pontos de retorno clássicos", onde a energia dos estados coincide com a energia potencial. Este resultado é consistente com o do oscilador harmônico clássico, para o qual a partícula passa mais tempo (e portanto é onde seria mais provável encontrá-la) nos pontos de retorno. Se satisfaz assim o Princípio da correspondência.
Aplicação: moléculas diatômicas
Ver artigo principal: Molécula diatômicaPara estudar o movimento de vibração dos núcleos pode-se utilizar, em uma primeira aproximação, o modelo do oscilador harmônico. Se consideramos pequenas vibrações em torno do ponto de equilíbrio, podemos desenvolver o potencial eletrônico em série de potências. Assim, no caso de pequenas oscilações o termo que domina é o quadrático, ou seja, um potencial de tipo harmônico. Portanto, em moléculas diatômicas, a frequência fundamental de vibração será dada por[3]:
- x

Para estudar o movimento de vibração dos núcleos pode-se utilizar, em uma primeira aproximação, o modelo do oscilador harmônico. Se consideramos pequenas vibrações em torno do ponto de equilíbrio, podemos desenvolver o potencial eletrônico em série de potências. Assim, no caso de pequenas oscilações o termo que domina é o quadrático, ou seja, um potencial de tipo harmônico. Portanto, em moléculas diatômicas, a frequência fundamental de vibração será dada por[3]:
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
que se relaciona com a frequência angular mediante e depende da massa reduzida da molécula diatômica.
que se relaciona com a frequência angular mediante e depende da massa reduzida da molécula diatômica.
Partícula em um anel
Na mecânica quântica, o caso de uma partícula em um anel unidimensional é semelhante à partícula em uma caixa[1][2]. A equação de Schrödinger para uma partícula livre que é restrita a um anel[3] (tecnicamente, cujo espaço de configuração é o círculo ) é
- x
Na mecânica quântica, o caso de uma partícula em um anel unidimensional é semelhante à partícula em uma caixa[1][2]. A equação de Schrödinger para uma partícula livre que é restrita a um anel[3] (tecnicamente, cujo espaço de configuração é o círculo ) é
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Função de onda
Usando coordenadas polares no anel unidimensional de raio R, a função de onda depende somente da coordenada angular, e assim
- x
Usando coordenadas polares no anel unidimensional de raio R, a função de onda depende somente da coordenada angular, e assim
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
exigindo que a função de onda seja periódica em com um período (da demanda de que as funções de onda sejam funções de valor único no círculo), e que elas sejam normalizadas leva às condições
- ,
- x
exigindo que a função de onda seja periódica em com um período (da demanda de que as funções de onda sejam funções de valor único no círculo), e que elas sejam normalizadas leva às condições
- ,
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
e
- x
e
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Nestas condições, a solução da equação de Schrödinger é dada por
- x
Nestas condições, a solução da equação de Schrödinger é dada por
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Partícula em um potencial esfericamente simétrico
Um problema importante na mecânica quântica é o de uma partícula num potencial esfericamente simétrico, isto é, um potencial que depende apenas da distância entre a partícula e um ponto central definido. Em particular, se a partícula em questão é um elétron e o potencial é derivado da lei de Coulomb, então o problema pode ser usado para descrever um átomo de hidrogênio (um elétron ou íon).
No caso geral, a dinâmica de uma partícula em um potencial esfericamente simétrico é governada por um hamiltoniano da seguinte forma:
- x
Um problema importante na mecânica quântica é o de uma partícula num potencial esfericamente simétrico, isto é, um potencial que depende apenas da distância entre a partícula e um ponto central definido. Em particular, se a partícula em questão é um elétron e o potencial é derivado da lei de Coulomb, então o problema pode ser usado para descrever um átomo de hidrogênio (um elétron ou íon).
No caso geral, a dinâmica de uma partícula em um potencial esfericamente simétrico é governada por um hamiltoniano da seguinte forma:
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde é a massa da partícula, é o operador momentum, e o potencial depende apenas de , o módulo do vetor raio; r. As funções e energias da onda quântica (autovalores) são encontradas resolvendo a equação de Schrödinger com este hamiltoniano. Devido à simetria esférica do sistema, é natural usar coordenadas esféricas , e . Quando isso é feito, a equação de Schrödinger independente do tempo para o sistema é separável, permitindo que os problemas angulares sejam tratados facilmente, e deixando uma equação diferencial ordinária em para determinar as energias para o potencial particular em discussão.
Em física, a partícula em uma caixa (também conhecida como poço de potencial infinito) é um problema muito simples que consiste de uma só partícula que rebate-se dentro de uma caixa imóvel da qual não pode escapar, e onde não perde energia ao colidir contra suas paredes.
Em mecânica clássica, a solução ao problema é trivial: a partícula se move em uma línha reta a uma velocidade constante até que rebate em uma das paredes. Ao rebater, a velocidade é alterada apenas na componente perpendicular à parede, que troca de sinal; o módulo da velocidade não se altera. Uma das soluções possíveis é uma partícula absolutamente estacionária, ou seja, com velocidade zero.
O problema se torna muito interessante quando se tenta resolver dentro da mecânica quântica, já que é necessário introduzir muitos dos conceitos importantes desta disciplina para encontrar uma solução. Entretanto, ainda assim é um problema simples com uma solução definida. Este artígo se concentra na solução dentro da mecânica quântica.
onde é a massa da partícula, é o operador momentum, e o potencial depende apenas de , o módulo do vetor raio; r. As funções e energias da onda quântica (autovalores) são encontradas resolvendo a equação de Schrödinger com este hamiltoniano. Devido à simetria esférica do sistema, é natural usar coordenadas esféricas , e . Quando isso é feito, a equação de Schrödinger independente do tempo para o sistema é separável, permitindo que os problemas angulares sejam tratados facilmente, e deixando uma equação diferencial ordinária em para determinar as energias para o potencial particular em discussão.Em física, a partícula em uma caixa (também conhecida como poço de potencial infinito) é um problema muito simples que consiste de uma só partícula que rebate-se dentro de uma caixa imóvel da qual não pode escapar, e onde não perde energia ao colidir contra suas paredes.
Em mecânica clássica, a solução ao problema é trivial: a partícula se move em uma línha reta a uma velocidade constante até que rebate em uma das paredes. Ao rebater, a velocidade é alterada apenas na componente perpendicular à parede, que troca de sinal; o módulo da velocidade não se altera. Uma das soluções possíveis é uma partícula absolutamente estacionária, ou seja, com velocidade zero.
O problema se torna muito interessante quando se tenta resolver dentro da mecânica quântica, já que é necessário introduzir muitos dos conceitos importantes desta disciplina para encontrar uma solução. Entretanto, ainda assim é um problema simples com uma solução definida. Este artígo se concentra na solução dentro da mecânica quântica.
Descrição quântica do problema
O problema pode apresentar-se em qualquer número de dimensões, mas o mais simples é o problema unidimensional, ainda que o mais útil é o que se centra em uma caixa tridimensional. Em uma dimensão, se representa por uma partícula que existe em um segmento de uma linha, sendo as paredes os pontos finais do segmento.
Em termos da física, a partícula em uma caixa se define como uma partícula pontual, encerrada em uma caixa onde não experimenta nenhum tipo de força (ou seja, sua energia potencial é constante, ainda que sem perda de generalidade podemos considerar que vale zero). Nas paredes da caixa, o potencial aumenta até um valor infinito, fazendo-a impenetrável. Usando esta descrição em termos de potenciais nos permite usar a equação de Schrödinger para determinar uma solução.
Como se menciona acima, se estivéssemos estudando o problema sob as regras da mecânica clássica, deveríamos aplicar as leis do movimento de Newton às condições iniciais, e o resultado seria razoável e intuitivo. Em mecânica quântica, quando se aplica a equação de Schrödinger, os resultados não são intuitivos. Em primeiro lugar, a partícula só pode ter certos níveis de energia específicos, e o nível zero não é um deles. Em segundo lugar, as probabilidades de detectar a partícula dentro da caixa em cada nível específico de energia não são uniformes - existem várias posições dentro da caixa onde a partícula pode ser encontrada, mas também há posições onde é impossível fazê-lo. Ambos resultados diferem da maneira usual na que percebemos o mundo, inclusive se estão fundamentados por princípios extensivamente verificados através de experimentos.
O problema pode apresentar-se em qualquer número de dimensões, mas o mais simples é o problema unidimensional, ainda que o mais útil é o que se centra em uma caixa tridimensional. Em uma dimensão, se representa por uma partícula que existe em um segmento de uma linha, sendo as paredes os pontos finais do segmento.
Em termos da física, a partícula em uma caixa se define como uma partícula pontual, encerrada em uma caixa onde não experimenta nenhum tipo de força (ou seja, sua energia potencial é constante, ainda que sem perda de generalidade podemos considerar que vale zero). Nas paredes da caixa, o potencial aumenta até um valor infinito, fazendo-a impenetrável. Usando esta descrição em termos de potenciais nos permite usar a equação de Schrödinger para determinar uma solução.
Como se menciona acima, se estivéssemos estudando o problema sob as regras da mecânica clássica, deveríamos aplicar as leis do movimento de Newton às condições iniciais, e o resultado seria razoável e intuitivo. Em mecânica quântica, quando se aplica a equação de Schrödinger, os resultados não são intuitivos. Em primeiro lugar, a partícula só pode ter certos níveis de energia específicos, e o nível zero não é um deles. Em segundo lugar, as probabilidades de detectar a partícula dentro da caixa em cada nível específico de energia não são uniformes - existem várias posições dentro da caixa onde a partícula pode ser encontrada, mas também há posições onde é impossível fazê-lo. Ambos resultados diferem da maneira usual na que percebemos o mundo, inclusive se estão fundamentados por princípios extensivamente verificados através de experimentos.
Caixa monodimensional
A versão mais precisa se dá na situação idealizada de uma "caixa monodimensional", na qual a partícula de massa m pode ocupar qualquer posição no intervalo [0,L]. Para encontrar os possíveis estados estacionários, é necessário aplicar a equação de Schrödinger independente do tempo em uma dimensão para o problema:
- [1]
- x
A versão mais precisa se dá na situação idealizada de uma "caixa monodimensional", na qual a partícula de massa m pode ocupar qualquer posição no intervalo [0,L]. Para encontrar os possíveis estados estacionários, é necessário aplicar a equação de Schrödinger independente do tempo em uma dimensão para o problema:
- [1]
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Considerando que o potencial é zero dentro da caixa e infinito fora, e observando que a função de onda se anula fora da caixa, temos as seguintes condições de contorno:
- [1a]
- x
Considerando que o potencial é zero dentro da caixa e infinito fora, e observando que a função de onda se anula fora da caixa, temos as seguintes condições de contorno:
- [1a]
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
e em que
- é a Constante reduzida de Planck,
- é a massa da partícula,
- é a função de onda estacionária independente do tempo[1] que queremos obter (funções próprias) e
- é a energia da partícula (valor próprio).
As funções próprias e valores próprios de uma partícula de massa m em uma caixa monodimensional de comprimento L são:
- [1b]
- x
e em que
- é a Constante reduzida de Planck,
- é a massa da partícula,
- é a função de onda estacionária independente do tempo[1] que queremos obter (funções próprias) e
- é a energia da partícula (valor próprio).
As funções próprias e valores próprios de uma partícula de massa m em uma caixa monodimensional de comprimento L são:
- [1b]
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Nota-se que só são possíveis os níveis de energia "quantizados". Além disso, como n não pode ser zero (ver mais adiante), o menor valor da energia tampouco pode sê-lo. Essa energia mínima se chama energia do ponto zero e se justifica em termos do princípio de incerteza. Devido à restrição da partícula em mover-se em uma região finita, a variância da posição tem um limite superior (o comprimento da caixa, ). Assim, de acordo com o princípio de incerteza, a variância do momento da partícula não pode ser zero e, portanto, a partícula deve ter uma certa quantidade de energia que aumenta quando a longitude da caixa L diminui.
Nota-se que só são possíveis os níveis de energia "quantizados". Além disso, como n não pode ser zero (ver mais adiante), o menor valor da energia tampouco pode sê-lo. Essa energia mínima se chama energia do ponto zero e se justifica em termos do princípio de incerteza. Devido à restrição da partícula em mover-se em uma região finita, a variância da posição tem um limite superior (o comprimento da caixa, ). Assim, de acordo com o princípio de incerteza, a variância do momento da partícula não pode ser zero e, portanto, a partícula deve ter uma certa quantidade de energia que aumenta quando a longitude da caixa L diminui.
Partícula livre
Na física, uma partícula livre é uma partícula que, em certo sentido, não está vinculada por uma força externa, ou equivalentemente não está em uma região onde sua energia potencial varia. Na física clássica, isso significa que a partícula está presente em um espaço "sem campo". Na mecânica quântica, significa uma região de potencial uniforme, geralmente modulada para zero na região de interesse, uma vez que o potencial pode ser arbitrariamente arranjado para zero em qualquer ponto (ou superfície em três dimensões) no espaço.
Na física, uma partícula livre é uma partícula que, em certo sentido, não está vinculada por uma força externa, ou equivalentemente não está em uma região onde sua energia potencial varia. Na física clássica, isso significa que a partícula está presente em um espaço "sem campo". Na mecânica quântica, significa uma região de potencial uniforme, geralmente modulada para zero na região de interesse, uma vez que o potencial pode ser arbitrariamente arranjado para zero em qualquer ponto (ou superfície em três dimensões) no espaço.
Descrição matemática
Partícula livre clássica
A partícula livre clássica é caracterizada simplesmente por uma velocidade fixa v. O momento linear é dado por
- x
A partícula livre clássica é caracterizada simplesmente por uma velocidade fixa v. O momento linear é dado por
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde m é a massa da partícula e v é o vetor velocidade da partícula.
onde m é a massa da partícula e v é o vetor velocidade da partícula.
Partícula livre quântica
Uma partícula livre na mecânica quântica (não relativística) é descrita pela equação de Schrödinger livre:
- x
Uma partícula livre na mecânica quântica (não relativística) é descrita pela equação de Schrödinger livre:
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde ψ é a função de onda da partícula na posição r e tempo t. A solução para uma partícula com momento p ou vetor de onda k, na freqüência angular ω ou energia E, é dada pela onda plana complexa:
- x
onde ψ é a função de onda da partícula na posição r e tempo t. A solução para uma partícula com momento p ou vetor de onda k, na freqüência angular ω ou energia E, é dada pela onda plana complexa:
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
com amplitude A. Como para todas as partículas quânticas livres ou ligadas, o princípio da incerteza de Heisenberg
- x
com amplitude A. Como para todas as partículas quânticas livres ou ligadas, o princípio da incerteza de Heisenberg
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
se aplicam. Como a energia potencial é adotada como zero, a energia total E é igual à energia cinética, que tem a mesma forma da física clássica:
- x
se aplicam. Como a energia potencial é adotada como zero, a energia total E é igual à energia cinética, que tem a mesma forma da física clássica:
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Há várias equações que descrevem partículas relativísticas: veja equações de onda relativísticas.[2][3][4][5]
Há várias equações que descrevem partículas relativísticas: veja equações de onda relativísticas.[2][3][4][5]
Pêndulo quântico
O pêndulo quântico é fundamental para entender as rotações internas impedidas na química, as características quânticas dos átomos de dispersão, bem como numerosos outros fenômenos quânticos.[1] Embora um pêndulo não sujeito à aproximação de pequeno ângulo tenha uma não-linearidade inerente, a equação de Schrödinger para o sistema quantizado pode ser resolvida de forma relativamente fácil.[2][3][4]
O pêndulo quântico é fundamental para entender as rotações internas impedidas na química, as características quânticas dos átomos de dispersão, bem como numerosos outros fenômenos quânticos.[1] Embora um pêndulo não sujeito à aproximação de pequeno ângulo tenha uma não-linearidade inerente, a equação de Schrödinger para o sistema quantizado pode ser resolvida de forma relativamente fácil.[2][3][4]
Equação de Schrödinger
Usando a teoria lagrangiana da mecânica clássica, pode-se desenvolver um hamiltoniano para o sistema. Um pêndulo simples tem uma coordenada generalizada (o deslocamento angular ) e duas restrições (o comprimento da corda e o plano de movimento). As energias cinéticas e potenciais do sistema podem ser encontradas em
- x
Usando a teoria lagrangiana da mecânica clássica, pode-se desenvolver um hamiltoniano para o sistema. Um pêndulo simples tem uma coordenada generalizada (o deslocamento angular ) e duas restrições (o comprimento da corda e o plano de movimento). As energias cinéticas e potenciais do sistema podem ser encontradas em
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
- x
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Isso resulta no Hamiltoniano
- x
Isso resulta no Hamiltoniano
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
A equação de Schrödinger dependente do tempo para o sistema é
- x
A equação de Schrödinger dependente do tempo para o sistema é
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
É preciso resolver a equação de Schrödinger independente do tempo para encontrar os níveis de energia e os auto-estados correspondentes. Isso é efetuado melhor alterando a variável independente da seguinte maneira:
- x
É preciso resolver a equação de Schrödinger independente do tempo para encontrar os níveis de energia e os auto-estados correspondentes. Isso é efetuado melhor alterando a variável independente da seguinte maneira:
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde as soluções são as funções Mathieu.[6][7][8]
onde as soluções são as funções Mathieu.[6][7][8]
Referências
Potencial de Pöschl-Teller
Em física matemática, um potencial de Pöschl-Teller, em homenagem aos físicos Herta Pöschl e Edward Teller, é uma classe especial de potenciais para os quais a equação de Schrödinger unidimensional pode ser resolvida em termos de funções especiais.
Em física matemática, um potencial de Pöschl-Teller, em homenagem aos físicos Herta Pöschl e Edward Teller, é uma classe especial de potenciais para os quais a equação de Schrödinger unidimensional pode ser resolvida em termos de funções especiais.
Definição
Na sua forma simétrica sua definição é explicitamente dada por[1]
- x
Na sua forma simétrica sua definição é explicitamente dada por[1]
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
e as soluções da equação de Schrödinger independente do tempo
- x
e as soluções da equação de Schrödinger independente do tempo
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
com este potencial pode ser encontrado em virtude da substituição , que produz
- x
com este potencial pode ser encontrado em virtude da substituição , que produz
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
- .
Assim as soluções (são apenas as funções de Legendre com , e , .[2][3] Além disso, os autovalores e os dados de espalhamento podem ser explicitamente computados[4]
No caso especial do inteiro , o potencial é sem reflexão e tais potenciais também surgem como as soluções de sóliton N da equação de Korteweg-de Vries.[5][6]
A forma mais geral do potencial é dada por[1]
- x
- .
Assim as soluções (são apenas as funções de Legendre com , e , .[2][3] Além disso, os autovalores e os dados de espalhamento podem ser explicitamente computados[4]
No caso especial do inteiro , o potencial é sem reflexão e tais potenciais também surgem como as soluções de sóliton N da equação de Korteweg-de Vries.[5][6]
A forma mais geral do potencial é dada por[1]
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Potential delta
Na mecânica quântica, o potencial delta é um poço de potencial matematicamente descrito pela função delta de Dirac - uma função generalizada. Qualitativamente, corresponde a um potencial[nt 1] que é zero em todos os lugares, exceto em um único ponto, onde leva um valor infinito[2].
Na mecânica quântica, o potencial delta é um poço de potencial matematicamente descrito pela função delta de Dirac - uma função generalizada. Qualitativamente, corresponde a um potencial[nt 1] que é zero em todos os lugares, exceto em um único ponto, onde leva um valor infinito[2].
Potencial delta único
A equação de Schrödinger independente do tempo para a função de onda ψ(x) de uma partícula em uma dimensão em um potencial V(x) é
- x
A equação de Schrödinger independente do tempo para a função de onda ψ(x) de uma partícula em uma dimensão em um potencial V(x) é
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde ħ é a constante reduzida de Planck e E é a energia da partícula.
O potencial delta é o potencial
- x
onde ħ é a constante reduzida de Planck e E é a energia da partícula.
O potencial delta é o potencial
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde δ(x) é a função delta de Dirac.
É chamado um potencial de poço delta se λ é negativo e um potencial de barreira delta se λ é positivo. O delta foi definido para surgir na origem por simplicidade; uma mudança no argumento da função delta não altera nenhum dos resultados procedentes[3].
onde δ(x) é a função delta de Dirac.
É chamado um potencial de poço delta se λ é negativo e um potencial de barreira delta se λ é positivo. O delta foi definido para surgir na origem por simplicidade; uma mudança no argumento da função delta não altera nenhum dos resultados procedentes[3].
istema quântico de dois estados
Na mecânica quântica, um sistema de dois estados (também conhecido como sistema de dois níveis) é um sistema quântico que pode existir em qualquer superposição quântica de dois estados quânticos independentes (fisicamente distinguíveis). O espaço de Hilbert descrevendo tal sistema é bidimensional. Portanto, uma base completa que liga o espaço consistirá em dois estados independentes. Qualquer sistema de dois estados também pode ser visto como um qubit.
Na mecânica quântica, um sistema de dois estados (também conhecido como sistema de dois níveis) é um sistema quântico que pode existir em qualquer superposição quântica de dois estados quânticos independentes (fisicamente distinguíveis). O espaço de Hilbert descrevendo tal sistema é bidimensional. Portanto, uma base completa que liga o espaço consistirá em dois estados independentes. Qualquer sistema de dois estados também pode ser visto como um qubit.
Representação do sistema quântico de dois estados
O estado de um sistema quântico de dois estados pode ser descrito por um espaço bidimensional complexo de Hilbert. Isso significa que cada vetor de estado é representado por duas coordenadas complexas:
- onde, and são as coordenadas.[1]
Se os vetores são normalizados, e são relacionados por . Os vetores base são representados como e Todas as grandezas físicas observáveis associadas a este sistema são matrizes Hermitianas 2 2 . O Hamiltoniano do sistema é também uma matriz Hermitiana 2 2.
x
O estado de um sistema quântico de dois estados pode ser descrito por um espaço bidimensional complexo de Hilbert. Isso significa que cada vetor de estado é representado por duas coordenadas complexas:
- onde, and são as coordenadas.[1]
Se os vetores são normalizados, e são relacionados por . Os vetores base são representados como e Todas as grandezas físicas observáveis associadas a este sistema são matrizes Hermitianas 2 2 . O Hamiltoniano do sistema é também uma matriz Hermitiana 2 2.
x
Comentários
Postar um comentário